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SUMMARY

In various problems in structural dynamics, the eigenvalues of a linear system depend on
a characteristic parameter of the system. Under certain conditions, two eigenvalues of
the system approach each other as the characteristic parameter is varied, leading to
modal interaction. In a system with "conservative coupling", the two eigenvalues
eventually repel each other, leading to the curve veering effect. In a system with "non-
conservative coupling", the eigenvalues continue to attract each other, eventually
colliding, leading to eigenvalue degeneracy. We study modal interaction in linear
systems with conservative and non-conservative coupling using singularity theory,
sometimes known as catastrophe theory. Our main result is this: eigenvalue degeneracy
is a cause of instability; in systems with conservative coupling it induces only geometric
instability, whereas in systems with non-conservative coupling eigenvalue degeneracy
induces both geometric and elastic instability. Illustrative examples of mechanical
systems are given.

1. INTRODUCTION

This is an expository paper on the application of catastrophe theory, sometimes known as

singularity theory, to the stability analyses of linear vibrating systems. One hopes that

experts in vibration theory may see from here how the relatively new mathematical ideas

in catastrophe theory provide insight into the qualitative, dynamical behavior of

engineering structures, while experts in catastrophe theory may learn of yet another way

in which their mathematical theories are applicable in engineering analysis. The
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principal objective in this effort is to investigate in a qualitative sense the stability of

linear vibrating systems near degenerate modes.

In vibration analysis, "degenerate modes" means the coincidence of two or more

eigenvalues. The most common kind of degeneracy encountered is called "double

modes", when only two eigenvalues are equal. The problem of modal interaction

considered in this paper is different from problems on "parametric resonance", or matters

related to "Arnol'd tongues" which have been addressed in the nonlinear dynamics

literature. In this paper, we are essentially concerned with the stability properties of

linear or linearizable vibrating systems. Linear models are often applied in engineering

analysis. Experience has shown that the results obtained from such linear models

generally compare well with experimental observations, when motion takes place in a

small neighborhood of the equilibrium position.

A broad range of concepts and terminology is required in this exposition. Since many of

these may be unfamiliar to several readers, an introductory discussion is presented in the

remainder of this Section, and also in Section 2. A selection of pertinent literature is

given in alphabetic author sequence, [1-48]. In carrying out our principal objective--

namely, an investigation of the stability of linear vibrating systems near degenerate

modes--we shall combine two important ideas: the first, concerning the nature of

coupling in vibrating systems, is due to Crandall; see Crandall and Mroszczyk [23] for a

description. The second idea, arising from catastrophe theory, concerns the lack of

"structural stability" of degenerate objects, and is due to Thom [42].

1.1 Conservative and Non-conservative Coupling

Suppose a vibrating system has two eigenvalues which depend on a system parameter a.

As this parameter is varied, the two eigenvalues approach each other. When they get

very close, they could

(a) repel each other, leading to curve veering, Figure 1(a); or,

(b) attract each other, eventually collide, as in Figure 1 (b), leading to degenerate

eigenvalues at the moment of collision.

In the terminology of Crandall, vibrating systems exhibiting the loci repulsion of Figure
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1 (a) aresaidto have"conservativecoupling", whereasthoseexhibiting theattractionof

Figure 1(b) aresaidto have"non-conservativecoupling".

1.2 Structural Stability, Elastic Stability, Geometric Stability

By "structural stability" in the foregoing paragraphs, we mean the concept developed by

Thom [42] to describe the behavior of various objects under small perturbations of the

objects, or the environment in which the objects are situated. Here, the term "object"

may mean a variety of mathematical entities: curves, surfaces, or manifolds; functions;

vector fields; etc. Since such objects are widely encountered in engineering analysis, an

understanding of their structural stability is important. According to Thom [42, p. 14]

"The concept of structural stability seems to me to be a key idea in the

interpretation of phenomena in all branches of science (except, perhaps,

quantum mechanics) ... "

In the terminology of Thorn, an object is said to have "structural stability" if a small

perturbation leads to only a small qualitative change in the behavior of the object.

Conversely, an object lacks structural stability if a very small perturbation changes its

qualitative behavior in a very drastic manner.

In structural dynamics, the word "stability" without a qualifier usually means elastic

stability, i.e. a special kind of structural stability where only the eigenvalues play a

decisive role. Thus, an engineering structure is said to be "stable" if all of its eigenvalues

lie in a certain region of the Nyquist plane. But there is another kind of instability which

is not as well-known in engineering dynamics. Although this instability does not lead to

the collapse of a structure, it is nevertheless a structural instability in the sense of Thom.

Here, and in other recent works by the present author, it is called geometric instability; it

is a "structural stability" where the eigenvectors play the decisive role. The idea of

differentiating between elastic and geometric stability in engineering dynamics was

introduced by Afolabi [6], and is discussed in detail elsewhere (Afolabi [5]).

1.3 Dependence of a Vibrating System on Parameters

It is well-known that the eigenvalues of many engineering systems have a dependence on

one characteristic parameter. We shall refer to such systems as one-parameter systems.



Systemsdependingon more thanone parameterarealso encountered,but suchmulti-

parametersystemsarenotdiscussedhere.

In a one-parametersystem,it is often easy to identify the "parameter".We cite a few

examples.

(a) In thecaseof arotatingmechanicalsystem,theeigenvaluesmayvary with the

speedof rotation,where rotation speed is the parameter (e.g. Crandall and

Dugundji, [21]).

(b) In aeroelastic systems, the eigenvalues typically are dependent on the relative

speed of air flow as measured by the mach number; one may thus take mach

number as the parameter (e.g. Dowell, [25]).

(c) In nominally periodic systems, small imperfections known as mistuning are

unavoidable in practice; in such systems, a measure of mistuning may be used

as the system parameter (e.g. Ewins, [26]).

(d) In a mechanical system consisting of a pipe conveying a fluid, its eigenvalues

may vary with the speed of the flowing fluid; in this case the fluid velocity

may be chosen as the parameter (e.g. Benjamin, [16]).

Several other examples of parametric dependence may be cited in the engineering

literature.

In a one-parameter system, certain values of the parameter are called "critical", in the

sense that some unusual (and sometimes undesirable) dynamics take place in the

neighborhood of those critical values of the parameter. Thus, at the critical speed of a

rotating machine, or the critical velocity of a fluid in a flexible pipe, complicated

dynamical effects are usually encountered. In this paper, it is shown that such unusual

dynamics is often induced by eigenvalue degeneracy, and modal interaction near the

degeneracy. It is also shown that systems with conservative coupling have modal

interaction leading to geometric instability only, whereas systems with non-conservative

coupling have modal interaction leading to both elastic and geometric instabilities.

In arriving at the above result, we applied Thom's transversality theorem to show that

when two systems depending on a common parameter are coupled, their "bifurcation
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diagrams"maytakeoneof thetypesshownin Figures1(a)and(b), which areassociated

with Crandall's conservativeand non-conservativecoupling. Thorn's transversality

theorem(seethe Appendix) is one of the foundationsof catastrophetheory. Because

somereadersof thispaperarenot likely to be familiar with detailsof catastrophetheory,

wepresentin thenextsectionareviewof thoseaspectsof thetheorywhicharenecessary

for explaining our results.Readerswho are familiar with catastrophetheory, or those

who arenot interestedin detailsof it, mayproceedto section3.

2. CATASTROPHE THEORY

One of the most interesting and relatively recent developments in mathematics is that due

to Thom [42], and named by Zeeman [47] as catastrophe theory. Certain closely related

mathematical concepts, which have been developed mainly by Arnol'd et al [8], are

known as singularity theory. In its early days, catastrophe theory met with some

criticism; see, for instance, Sussman and Zahler [41], and the exchange of

correspondence in the journal Nature, [46]. The criticism, and the resulting controversy,

centered on the application of catastrophe theory in the social sciences. Over the years,

however, catastrophe theory has matured into a sound mathematical theory. A discussion

of some of its applications in the physical sciences and mathematics has been carried out

by Zeeman [47], Poston and Stewart 139], Gilmore [27], and Thompson and Hunt [44],

among others. Although there are many applications in physics (see, for instance, Berry

[15]) there are surprisingly only a few in engineering. Those few applications in

engineering are mentioned below.

2.1 Applications of Catastrophe Theory in Engineering

One of the earliest applications of catastrophe theory in engineering is the paper by

Holmes and Rand [31]. They investigated the phase portraits and bifurcation

characteristics of a single degree of freedom nonlinear oscillator, based on Dufflng's

equation. Subsequently, this application to nonlinear single degree of freedom system

was extended and forms, along with other ideas from dynamical systems theory by

various workers, the basis of what is now known as "chaos", or chaotic dynamics; see

Guckenheimer and Holmes [291 for more details.
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Thompsonand Hunt [44] have written extensivelyon the application of catastrophe

theory in the analysisof civil engineeringstructures.Again, their treatmentis basedon

the existenceof nonlinearity in the system. They treated static, gradient systems

predominantly.

With respect to vibration analysis, only one degree of freedom nonlinear systems are

usually treated in catastrophe theory and chaos. The implicit assumption has been that

catastrophe theory is applicable only to nonlinear systems. It is only in recent years that

Afolabi [4-6] has shown that catastrophe theory is also applicable to linear vibrating

systems. In this paper, we apply catastrophe theory to linear vibrating systems with two

degrees of freedom. This application to linear systems is admissible if we go to the

fundamentals, and apply the transversality theorem directly. The present work is,

therefore, different from previous applications of catastrophe theory in engineering

mechanics by other investigators, where only nonlinear systems have been treated.

2.2 Degenerate and Generic Objects

In catastrophe theory, many concepts are formulated in terms of "objects" which, in

applications, may represent a variety of things: smooth curves or manifolds, matrices,

vector fields, etc. This is common in the branch of mathematics known as category

theory. It is then important to distinguish between two types of objects: degenerate and

generic. Generic objects are those that are encountered most frequently, and are said to

be in "general position"; they have structural stability in the sense of Thom. On the other

hand, degenerate objects are in exceptional position, and lack structural stability.

A degenerate object lacks structural stability because, under an arbitrarily small change

in its parameter, the object exhibits a qualitatively different behavior. The object is then

said to undergo a bifurcation, since the simplest type of degeneracy induces a breaking

into two qualitatively different types of behavior after a perturbation.

2.3 Singularity Theory, Catastrophe Theory, Bifurcation Theory

Often, the characteristics of an object are investigated in a "parameter space", where the

various parameters on which the object depends are the bases. Any point in the

parameter space at which the object shows degenerate characteristics is called a
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bifurcation point; the coordinates of such a point are called bifurcation parameters. The

set of all such points in the parameter space is known as the bifurcation set. Thus exists a

close relationship among bifurcation theory, singularity theory, and catastrophe theory.

The unifying concept is degeneracy.

According to Arnol'd [9],

"The mathematical description of the world depends on a delicate

interplay between continuity and discontinuous, discrete phenomena ....

Singularities, bifurcations and catastrophes are different terms for

describing the emergence of discrete structures from smooth, continuous

ones .... Some people consider catastrophe theory as part of the theory of

singularities, while others, conversely, include singularity theory in

catastrophe theory."

An important deduction from catastrophe theory is the importance of paying special

attention to objects exhibiting degenerate characteristics, because structural stability will

be lost at or near the degeneracy.

The foregoing may be illustrated by taking as an object, a matrix. If a given matrix

depends on parameters, say mistuning parameters, there may be certain critical

parameters at which the matrix has degenerate eigenvalues. Then, we deduce

immediately that such critical values are bifurcation points in a parameter space, and the

matrix having the critical parameter is in a bifurcation set. We would then expect some

structural instability in the behavior of the matrix, if it is given an arbitrarily small

perturbation from the degeneracy. In certain cases, the structural instability may be

related to an already known type of instability in engineering, e.g. elastic instability; in

other cases, such instability may not be well-known, e.g. geometric instability, (Afolabi,

[4-6]).

2.4 Transversal Intersections of Manifolds

Another central idea in catastrophe theory, in addition to Thom's transversality theorem,

is its extension--the isotopy theorem. Both theorems concern the intersections of

manifolds, and their structural stability. One of the routes to the application of

catastrophe theory is by a direct application of these theorems. Both are long and highly
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technical;simplified statementsof the transversalitytheoremaregiven in theAppendix

without proofs.For proofs, the interestedreaderis referredto Abrahamand Robbin [1,

ch. 4], Arnol'd [10], Wasserman[45], PostonandStewart[39], or ThomandLevin [43].

Before stating the basic ideasof the transversalitytheoremin an intuitive form, it is

necessaryto define smoothmanifoldsheuristically, which is sufficientfor engineering

applications.Throughout this paper, when "manifold" is used without any qualifier,

"smoothmanifold" is intended.

A smoothmanifold is a spacethat everywherelocally seems flat. This is simply an

extension of the fact that a smooth curve in a plane locally looks like a straight line--if

we consider a small enough segment of the curve. Also, in 3-space the curved surface of

a round object like the earth locally appears to be flat, although it is actually curved on a

global scale. Locally approximating curved surfaces by their tangent planes, as in the

above examples, is very common in infinitesimal calculus and differential topology. In

this way, a manifold may be visualized as an nth dimension smooth surface, which

locally looks like an nth dimension tangent plane. Manifolds which are smoothly

embedded in a larger manifold are known as submanifolds.

2.4.1 Stability of Intersections

When two manifolds intersect, their intersection is either structurally stable or unstable.

This concept is best illustrated by examples, as shown in Figures 2. In each figure, two

plane curves (i.e. smooth submanifolds of R 2) intersect. The intersection X at Figure 2

(a) is unstable, in the sense that if we perturb M 1 or M2 ever so slightly, we either have

two points of intersections as in Figure 2(b), or none at all as in Figure 2 (c). The fact that

the number of times the two manifolds intersect changes abruptly, into two or zero, under

the slightest perturbation is a "catastrophe". It is qualitatively significant, and indicates

structural instability. On the other hand, the curves shown in Figure 2 (d) intersect in a

stable way. No matter what kind of small perturbation we impose on the two curves M1

and M2, they always intersect at exactly two points--no more, no less; see Figure 2 (e).

Moreover, the coordinates of the points of intersection after perturbation (the solid

curves in Figure 2 (e)) are also close to the coordinates before perturbation (the dotted

curves). This robustness is a consequence of the isotopy theorem.
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Stableintersectionsas in Figure2 (d) arecalled transversal intersections in catastrophe

theory, and are said to be in "general position". Unstable intersections as in Figure 2 (a)

are in exceptional position, and are called degenerate, or non-transversal.

2.4.2 Genericity and Uniqueness of Tangents

The loss of uniqueness of tangent spaces at a non-generic intersection of two manifolds is

a degeneracy, consequent on the transversality theorem; it is thus a generator of

instability. For example, at the intersection in Figure 2 (a), the intersecting manifolds M 1

and M2 have the same tangent, therefore the tangents are not unique, and are called

degenerate; the intersection is hence unstable. Degeneracy always implies instability of

some sort. On the other hand, the intersections of Figure 2 (d) are stable because each of

the manifolds M 1 and M2 at each intersection point has its distinct and unique tangent.

2.5 Perestroikas, Versal Unfoldings, and their Codimension

The concept of "unfolding" is very important in singularity theory and catastrophe

theory.

Any object at a bifurcation point must evolve along one of at least two different paths

after leaving the bifurcation point. A bifurcation can only take place at a degeneracy.

The number of qualitatively different paths along which a degenerate object evolves after

a bifurcation is related to the codimension of the degeneracy. The process of undergoing

the change is known as an unfolding, or a metamorphosis, or a perestroika. In the Russian

text--for instance, by Arnol'd--unfoldings are called perestroikas. (In recent years, the

word perestroika has been made famous by Mr. Gorbachev, President of the Soviet

Union, in the political context). Thom uses biological metaphors, such as a bud unfolding

to reveal a flower of many colors, or an egg undergoing a metamorphosis to become a

butterfly, in his mathematical writings.

A versal unfolding is a special unfolding, in the sense that it contains all possible forms

that could result from a perturbation. Just as one speaks of a versal unfolding, one also

has a versal perturbation. Because a perturbation is sometimes called a "deformation",

one also has a versal deformation. Thus, a versal deformation is the most general

perturbation, from which all other perturbations may be obtained as special cases. The
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original ideanow calledversaldeformationwasintroducedby Poincar6in LemmaIV of

histhesist, accordingto Arnol'd.

Consider,for anexampleof versaldeformation,an "object" which is a smoothcurve:

y = x 3. This curve has a degenerate critical point at x = 0. Its versal deformation is

y = x 3 + alx, where a 1 is an unfolding parameter. We get qualitatively different curves,

with respect to the number of distinct critical points, depending on whether al is positive,

negative, or zero. Similarly, the curve y = x n has two degenerate critical points at x = 0,

and two parameters are needed for a versal unfolding: y = x 4 + a2 x2 + cqx. We get

qualitatively different curves for various positive, negative, and zero combinations of al

and ct2. All such curves constitute a versalfamily, [10].

Not all unfoldings are versal. For example, y = x4+ aax 2 is an unfolding of the

degenerate curve y = x 4, but it is not a versal unfolding, as explained below. Here,

'degenerate curve' means a curve with degenerate critical point.

Also, versal unfoldings are not always unique. In the case when a versal unfolding also

happens to be uniquely determined, it is known as a universal unfolding. A versal

unfolding with the minimum number of unfolding parameters is called a miniversal

unfolding. (Here, we use the terminology of Arnol'd, rather than that of Thom. What

Arnol'd calls a versal unfolding, Thom calls a universal unfolding. Thom does not seem

to distinguish between versal and universal unfoldings, whereas Arnol'd does).

An important point regarding the structural stability of the intersection of manifolds is

the codimension of the submanifold of intersection. This is related to the dimension of

the ambient space in which the intersecting manifolds are smoothly immersed. The

codimension of a submanifold is an integer, just as its dimension is also an integer. (In

recent years, it has been discovered that non-integer, i.e. fractional, dimensions are

encountered in fractal objects. Fractal catastrophes have been investigated by Professor

M. V. Berry in connection with caustics). The integer value of the codimension of an

object is very important, for it tells us how many parameters are required for a versal

unfolding of that object under arbitrary perturbation. For example, the curve y = x 4

discussed above has a codimension 2. The unfolding: y = x 4 + a2x 2 is non-versal, since

t H. Poincarr, Sur les propridt_s des fonctions ddfinies par des _quations aux diffdrences
partielles. (in Thdse, 1879, of Oeuvres Compldtes, vol. I) Paris: Gauthier-Villars, 1928.
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it has codimension 1, and one additional unfolding parameter is still required. A versal

unfolding must have codimension zero, since only then is it stable.

3. CATASTROPHE THEORY AND BIFURCATION DIAGRAMS

Catastrophes and bifurcations are related via degeneracy. A useful device in the analysis

of an evolutionary process through a degeneracy is the bifurcation diagram.

3.1 Symmetric Pitchfork Bifurcation (Nonlinear)

As an example of bifurcation diagrams, we shall first mention the "pitchfork

bifurcation", which has been much studied; see, for instance, Golubitsky and Schaeffer

[28] for theoretical comments, and Thompson and Hunt [44] for applications in civil

engineering.

A symmetric pitchfork is obtained when a curve intersects a line, as shown in Figure 3

(a). This case may represent, for example, two uncoupled vibrating systems depending

nonlinearly on one parameter. When the two previously isolated systems are coupled,

there are only two ways in which the composite bifurcation diagram may evolve due to

the interaction. Both of them are shown in Figures 3 (b) and 3 (c).

3.2 Local Bifurcation (Linear)

When parameter ranges are small, we get local versions of the globally non-linear cases

above. Thus, the resulting bifurcation diagrams in Figures 4 are local, linearized versions

of the global, nonlinear curves of Figure 3.

One notices immediately a resemblance of Figure 4 to Crandall's conservative and non-

conservative coupling diagrams, shown earlier as Figures 1 (a) and (b) respectively.

4. SYSTEM MATRICES AND BIFURCATION DIAGRAMS

As stated earlier, the basic theorems of catastrophe theory (such as the transversality,

isotopy and versal deformation theorems) pertain to mathematical "objects" which, in

applications, may be smooth curves or manifolds, matrices, etc.
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In this section,we shall considermatrices;2x2 matricesspecifically.This is relevant in

applications,when two undampedsingle degreeof freedomsystemsinteract.Without

lossof generality,it will be assumedthat the two uncoupledsystemsare not identical;

their differencebeingmeasuredby a "mistuning" or imperfectionparameter.In the2x2

matricesto be consideredhere, the imperfectionparametersappearon the diagonals,

while the off-diagonal terms represent"coupling". The dynamicsof sucha coupled

system may be described by matrices depending on parameters (Arnol'd, [11]).

Alternatively, onemay alsostudythedynamicsin termsof smoothcurvesdependingon

parameters.Suchcurvesoften giverise to bifurcationdiagrams.

4.1 Matrix Structure in Vibration Analysis

Theequationsof motionof a linearvibratingsystemin matrix form are

ME + CJ¢ + Kx=O (la)

The matrices in equation (1 a) above are square, of size n xn, and may have a variety of

structures. Take K for instance. K may be diagonal (kij = kji = 0 for i _ j), symmetric

(kji = kij), or skew symmetric (kji = -kij). The diagonal elements of a skew-symmetric

matrix are all zero, i.e. kii = 0 for all i. Sometimes, the matrices we encounter will be an

additive composition of a diagonal and a skew symmetric matrix. For this purpose, we

shall coin the phrase " diaskew symmetric matrix" when aji = - aij and aii _ O.

4.2 Gyroscopic and Circulatory Matrices

By a well-known theorem in linear algebra, any non-symmetric square matrix may be
O

decoml_ed into a symmetric part and a skew symmetric (sometimes called anti-

symmetric) part.

In equation (1 a), M is the mass matrix, which is symmetric, or can usually be made to be

purely symmetric. In general, the "damping" C and "stiffness" K matrices are not sym-

metric. Equation (la)may therefore be rewritten as

where the subscripts s and a, respectively, refer to symmetric and anti-symmetric parts.
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Following Ziegler [48, p. 29], the symmetricpart Ks of the matrix pre-multiplying the

displacement vector is called the stiffness matrix, whereas the skew symmetric part Ka is

called the circulatory matrix. This is to be distinguished from a circulant matrix, which is

a matrix in which each row is a circular shift of the previous row by a fixed number of

columns; a circulant matrix may be symmetric or skew symmetric. Also, the symmetric

part Cs of the matrix pre-multiplying the velocity vector is called the damping matrix,

whereas the skew symmetric part Ca is called the gyroscopic matrix. Although Ca is

called a gyroscopic matrix, it does not always arise from gyroscopic effects. For example,

it may be due to magnetic forces, Coriolis forces, etc.

4.3 Versal Deformation of Matrices

In this section, we consider undamped vibrating systems with two degrees of freedom,

i.e. those for which equation (la) applies for n = 2. This is just for convenience, and

leads to no loss of generality for n > 2. Assume M = I where I is the identity matrix, and

that elements of K are real. Let k be the nominal stiffness of the reference isolated sys-

tem; e a mistuning parameter; and s is the coupling strength. Consider the following

stiffness matrix of the tuned or perfect, uncoupled system

[0 0]
Such a matrix has degenerate eigenvalues, and is "structurally unstable" by virtue of the

degeneracy. By the versal deformation theorem of Arnol'd [ 11] we know that a versal

deformation of equation (2a) may be written as

k + e] e3 ]Kv = e2 k + e4 (2b)

By translating the origin, one may set el = 0, without affecting the qualitative nature of

the system dynamics. There are exactly four qualitatively different ways in which the

coupling and mistuning parameters ei may be varied in the matrix Kv to give qualita-

tively different dynamical systems. The resulting four matrices from the versal family are

enumerated below, in sections 4.3.1-4.3.4. Although all four are listed, only two of them

are considered in detail here; see section 5. The other cases, as well as those involving

damping and gyroscopic matrices, will be returned to in subsequent work.
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In eachsubsectionbelow,wegive :

(a) first, thestiffnessmatrix Ki in the conventional form;

(b) then, the eigenvalue matrix A i in the Crandall canonical form;

(c) and, finally, the bifurcation diagram.

In the canonical form, a is the variable imperfection parameter and r, the fixed coupling

term. If desired,/3 may be made the variable parameter with a being constant. Of course,

in a two parameter system, both a and/3 would be variable, with neither being held con-

stant.

4.3.1 Case I: Eigenvalue Veering

The eigenvalues repel each other at the critical parameter, and never collide.

The stiffness matrix of the coupled system is symmetric with real elements. Setting

C 1 = 0, E2 = E3 = --S, E4 = E, in equation (2b), one gets

[k s -se]" AI= [1-; +/3jKI= k+ ' - 1 (3a,b)

E S

a= _; /3= _. (3c,3d)

The bifurcation diagram for this case is depicted in Figure 5. It usually leads to geometric

instability, when the eigenvalues get too close, in the neighborhood of a = 0. This bifur-

cation diagram has been reported upon extensively in the structural dynamics literature,

and is usually known as "curve veering"; see Leissa [34], Perkins and Mote [37], Pierre

[38], Bajaj et al [13], etc. In physics, the eigenvalue repulsion is known as "avoided

crossing", while the attraction discussed below is known as "frequency coalescence".

4.3.2 Case I1: Eigenvalue Collision -- Degeneracy of the First Kind

The eigenvalues attract each other, and collide destructively at the critical parameter.

The system matrices for this version may be put in the form of the following dia-skew

matrices

K2 = [ks k+e-s ]; A2 = [l_t_ 1-+fla] (4a,b)
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When a = fl or s = e/2, the paths of two approaching eigenvalues intersect non

transversely, and we have eigenvalue degeneracy, as mentioned earlier. The eigenvec-

tors are also degenerate. The bifurcation diagram for this case is in Figure 6. It may be

observed that the two eigenvalues collide ("destructively") at a critical value of the mis-

tuning parameter, when a = -ft. Then, as the parameter continues to vary in the same

direction (in this case, the mistuning continues to increase in the positive direction) a

second critical parameter value is reached a = +/3, at which two distinct eigenvalues

suddenly emerge. The separation between the eigenvalues continues to widen as the

parameter continues along its path of variation.

Between the two critical parameter values lies a zone of elastic instability orflutter. The

width of the zone is 2ft. The critical parameter is sometimes called the flutter boundary.

In the canonical form, negative values of the parameter are encountered, placing half of

the inadmissive parameter range, - fl < a </3, in the negative sector of the parameter

plane. In practical cases, the inadmissive range may completely lie in the positive half of

the parameter plane. This may be achieved by translating the origin, e.g. by replacing a

with a" where a'=a+p, p>[ill>O.

4.3.3 Case II1: Degeneracy of the Second Kind

The eigenvalues pass through each other at the critical parameter; the eigenvalues, as

well as the eigenvectors, are degenerate at the bifurcation point.

Coupling in this case gives rise to a matrix which is not diagonalizable. Its physical effect

is to act as a diode does in an electronic circuit, or as a one-way valve in a hydraulic cir-

cuit. It may be written in the form

-s . A3 = 1 a (5a,b)K3-- 0 k+ ' 1

Case II discussed above may, at first glance, seem to be identical to this present case, and

also with Case IV discussed below, in the sense that they both have degenerate eigen-

values at the critical parameter. However, the degenerate eigenvalues occur under very

different circumstances. Here, a = 0 is the condition at which eigenvalues are degen-

erate, compared with a = in Case II. Also, at the critical value of the parameter, the

two eigenvalues meet but do not collide destructively as in Case II; they simply pass
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througheachother,asdepictedin Figure7. Moreover,only onecritical parametervalue

is encounteredhere,unlike in CaseII whentwo differentcritical valuesexist.An impor-

tant fact for systemdynamicsin this caseis this: at the critical parameter,the system

matrix cannot be diagonalized; it can only be reduced to the Jordan normal form. Further,

there is no zone of inadmissive parameter values as in Case II. It is important to remark

here that this case can give rise to extremely complicated dynamics in the neighborhood

of degeneracy, and the subject is currently being developed in another paper.

4.3.4 Case IV: Degeneracy of the Third Kind

The eigenvalues pass through each other at the critical parameter; the degenerate

eigenvalues have independent eigenvectors at the bifurcation point, but the eigenvectors

are dense in the unit disk.

The system matrix in this case is rather simple; it is diagonal, representing uncoupled

non-interacting systems.

0] 0o]K4= 0 k+ ; AI= 0 1+

The bifurcation diagram is shown in Figure 8. It is identical to that in Figure 7. However,

the dynamics represented in the present case is very different, due to the fact the eigen-

vectors here are linearly independent at the degenerate eigenvalue, and the system matrix

is diagonalizable for all values of a. This kind of degeneracy occurs in a decoupled two

degree of freedom system, or in cyclic symmetric systems with purely conservative cou-

pling where double modes are frequently encountered.

5. EXAMPLES OF MODAL INTERACTION IN MECHANICAL SYSTEMS

In section 4.3, we enumerated the four qualitatively different matrices obtainable from a

versal family of a degenerate 2x2 matrix. In this section, we are basically interested in

the first two cases, and now examine examples of mechanical systems exhibiting charac-

teristics of their bifurcation diagrams.

Suppose a mechanical system P has an eigenvalue depending on a parameter a as

shown in Figure 9 (a). Then, another system Q which, not coupled to P, depends on the
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sameparameter,but in adifferentfashionasshownin Figure9 (b). By coupling thetwo

systemstogether,thecompositestructurewill haveaneigenvalueloci diagramwhich has

asasymptotes, Figure 9 (c). If the coupling is conservative, then the bifurcation diagram

is as shown in Figure 9 (d). For non-conservative coupling, we have Figure 9 (e). These

"unfoldings" of the degenerate bifurcation diagram can be deduced from Thom's

transversality theorem.

In the foregoing, we have assumed that the subsystems in their uncoupled state both

depend on the same parameter. In some cases, only one subsystem P depends on the

parameter, a, as in Figure 10 (a), while Q is independent of a, Figure 10 (b). For such

systems, we have the versal family of the bifurcation diagrams shown in Figures 10 (d)

and (e).

5.1 Conservative Coupling

5.1.1 One-to-One Interaction

A one degree of freedom subsystem coupled to another one degree of freedom subsystem

is the standard, simplest case. The system shown in Figure 11 has been treated by Arnol'd

[7, pp. 105if]. Curve veering and localization in the system of two coupled pendula have

been studied by several authors; see, for instance, Pierre [38] and Bajaj et al [13]. It is

easy to write down the system equations; see, for instance, Arnol'd [7, p. 106], or Bajaj et

al [13]. The eigenvalue matrix may be placed in the form

1+3 -3 3]1
--+

-fl l+a

(7)

By a suitable change of basis, the above equations may be converted to the Crandall

canonical form, Equation (3b). A variety of undamped coupled mechanical systems hav-

ing a real, symmetric stiffness matrix will show the same kind of curve veering associated

with conservative coupling. They are far too numerous to be listed here.

5.1.2 Two-to-One Interaction

By using the concept of binary composition, it is a routine matter to predict the bifurca-

tion diagrams of a two degree of freedom system coupled to a one degree of freedom. For
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instance,supposea twodegreeof freedomsubsystemP is invariant with system parame-

ter a, while the second one degree of freedom subsystem Q depends on the parameter in

the manner of Figure 12. Upon imposing conservative coupling at the applicable coordi-

nates, one obtains the bifurcation diagram shown in Figure 12 (c). This kind of bifurca-

tion diagram is very common in many vibrating systems depending on one parameter.

5.1.3 Multi-to-One Interaction

As another example, consider a multi degree of freedom subsystem P with the parameter

dependence of Figure 13 (a), and a one degree of freedom subsystem Q varying as shown

in Figure 13 (b). The asymptotes or framework of the composite bifurcation diagram will

look like Figure 13 (c), upon conservative coupling of P and Q. A mechanical example

has been studied by Su [40], among others; see Figures 5 and 6 of Su.

5.1.4 Multi-to-Multi Interaction

As an example of a multi degree of freedom coupled to another multi degree of freedom,

one may cite the studies of Cheng and Perkins [19]. By inspection, one notes that all the

intersections in their Figure 5 correspond to conservative coupling.

5.2 Non-Conservative Coupling

Non-conservative coupling frequently arises when we have a circulatory matrix. Often,

this arises from taking a vector cross product. As is well-known, there are mathematical

anomalies associated with the vector cross product. For instance, the vector cross

product--unlike the scalar or dot product--exists only in a three dimensional real vector

space. To extend the operation to IRn, n >3, is not possible; the best we can do is use Lie

algebra.

In a forthcoming paper Afolabi [3], it is shown that the vector cross product arises in sys-

tems with direction sensitivity, thereby leading to skew-symmetric matrices. Direction

sensitivity occurs in problems with convective forces (including moving loads, translat-

ing cables, pipes conveying fluid, aeroelasticity, etc) rotating systems, systems with fol-

lower forces, etc. When such matrices premultiply the mass or stiffness matrix, elastic

instability (flutter) is induced for certain parameter values.

Thompson and Hunt [44] have conducted a comprehensive review of many elastic
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instability phenomenafrom the static and nonlinearpoint of view, using catastrophe

theory.Our approachhereis from thedynamicandlinear view point.The following are

representativesamplesof a few well-knownproblemswhich arenow re-examinedfrom

our presentviewpoint: namely,that eigenvalue degeneracy is a generator of "structural

instability", which leads to elastic instability in certain cases when the eigenvectors are

also degenerate, and to geometric instability in others where the eigenvectors may be

resolved into linearly independent directions. It must be emphasized that there are vari-

ous routes to elastic instability, and the route of eigenvalue degeneracy is only one of

them.

All the problems described in this section have 1:1 interaction. These are the most com-

mon forms of nonconservative coupling. Once a range of parameters is encountered

where instability holds, it is often difficult to operate the machinery beyond the critical

zone.

5.2.1 One-to-One Interaction: Rotating Systems

The problem of "ground resonance" of helicopters is a classic example of this one. This

is discussed in many texts; see, for instance, Den Hartog [24, p249]. Other problems

related to this have been treated by, for instance, Crandall [20], and Crandall and

Dugundji [21-22] who reported on the aircraft engine/propeller interaction problem from

linear and nonlinear analyses.

5.2.2 One-to-One Interaction: Pipe conveying fluid

Linear and nonlinear versions of the problem of a pipe conveying fluid have been studied

by several authors. For, instance Benjamin [16], Bishop and Fawzy [17], Paidoussis and

co-workers [35, 36], Bajaj and Sethna [12] and Holmes [30]; among others.

Elastic instability of such systems are principally due to two causes, the presence of "cir-

culatory" and "centrifugal" terms in the stiffness matrix. The circulatory terms lead to

flutter, while the centrifugal terms lead to divergence. I conjecture that flutter in this case

may also be explained in terms of the collision of two eigenvalues of opposite "Krein

signatures", see Krein [33]. At any rate, structural instability induced by eigenvalue

degeneracy is observed, as predicted by catastrophe theory. When nonlinear as well as

gyroscopic terms are present, they tend to stabilize the system, in general.



- 20 -

5.2.3 One-to-One Interaction: Linear Flutter

The problem of panel flutter has been studied extensively by several authors. See, for

instance, Dowell [25]. He details two kinds of linear flutter: 'single mode flutter due to

negative damping', and coupled mode flutter due to 'merging or coalescence of frequen-

cies'. The latter case which arises at supersonic Mach numbers is discussed here, from

the point of view of eigenvalue degeneracy.

For Mach number M > "_-, Dowell [25, p. 20, eq. 27] gives the following matrix for a

two mode approximation of the dynamics of a flat plate; see [25] for nomenclature:

MI( (..02--032)

,_. U 2 _M--t-" _,g21

P= U 2 _m_,_21

(8a)

One may cast the above in Crandall canonical form, by using the following substitutions:

leading to the eigenvalue matrix

c02 = l-a;

095= l+a;

a = (co2-o 2);

p_, U 2 ZM
*o_21

(Sb)

1-a-& /3 ]-/3 l+a-X
(8c)

The condition for degenerate eigenvalues are obtained when the "mistuning" or imper-

fection parameter a cancels out the "coupling" term fl, i.e. when a = fl, or

2cJ rr2 _M

0)2--(_0 2 = t"'_ _" *°_21
____1M 2 (8d)

Again, the flutter instability here is due to the collision of two eigenvalues. The collision



-21 -

originatesfrom the circulatorymatrix, dueto aeroelasticforces.Thus,structuralinstabil-

ity inducedby degeneracyaspredictedfrom catastrophetheoryisalsoin evidencehere.

Anotherflutterproblemwith two degreesof freedomhasbeentreatedby Bakhle,Reddy,

and Keith [14]. The non-symmetricnature of their stiffnessmatrix meansit may be

resolvedto a symmetricpart,anda skew-symmetricpart--the circulatory matrix. Again,

flutter occursunder the appropriatecondition demandedby eigenvaluedegeneracyof

catastrophetheory.

5.2.4 One-to-One Interaction: Follower Force

Several mechanical systems incorporating a "follower force", have been described in

detail by Bolotin [18]. In Bolotin [18, p. 90, section 2.2], the matrix equations given are

of the non-conservative coupling type. Thus, flutter occurs due to eigenvalue degeneracy.

Flutter induced by eigenvalue collision is also evident in an earlier section of the book:

Figures 21-22 on pages 56-57. Again, all this is placed in clearer perspective when

viewed from the position that eigenvalue degeneracy is a generator of structural instabil-

ity, in the sense of Thom.

5.3 Mixed Conservative and Non-conservative Coupling

A system may have conservative coupling at a certain range of the system parameter,

a: < a <o:2 only to have non-conservative coupling at a different (usually, higher) value

of the parameter a3 < ct < a4. We give some examples.

5.3.1 Rotating Systems

The stability of an engine/propeller systems has been studied by Crandall and Mroszczyk

[23]. The parameter in this system is the rotation speed of the propeller. The engine, as a

two degree of freedom system, has two resonant frequencies that do not vary with rota-

tion speed; Figure 14 (a). The propeller's frequency, however, varies as with rotation

speed as in Fig 14 (b), due to centrifugal effects. The first coupled resonance is conserva-

tive, while the second is nonconservative; Figure 14 (c).

5.3.2 Convective Problems

By convective problems we mean problems with spatial or temporal direction sensitivity.
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Amongtheseareproblemsof moving load, which havebeentreatedby many investiga-

tors in a variety of contexts:Alabi and Afolabi [2], Chengand Perkins[19], Crandall

[20], Kortum and Wormley [32], Perkinsand Mote [37], etc. Mixed coupling hasbeen

reportedin connectionwith this typeof problemby ChengandPerkins[19]. Their "sub-

critical" speedcorrespondsto conservativecoupling, while the postcritical regime

correspondsto nonconservativecoupling.

6. NUMERICAL EXPERIMENTS

It is generally a useful strategy in engineering analysis to invent canonical forms for vari-

ous problems. The advantage is that once a solution is obtained for the canonical form,

we can solve a variety of similar problems simply by casting any such problem in the

standard form.

Using the canonical forms of coupling due to Crandall, as discussed in Section 4, one

may obtain the time domain response of both coupling types in closed form, following

standard procedures in the theory of ordinary differential equations. This requires the

prior calculation of eigenvalues and eigenvectors. Numerical methods may also be used

to integrate the required ordinary differential equations with prescribed initial conditions.

6.1 Conservative Coupling

When formulated as a second order differential equation problem, the system with con-

servative coupling in the Crandall canonical form (equation 3b) has the following eigen-

values and eigenvectors.

Z] = 1-_]a ,2+fl2 ; 22= l+N/a 2+]32 . (9a)

Ul= ; U2 = (9b)

From (9a), one notices that eigenvalues here cannot collide. There is a minimum distance

A_ = 1_1- 221 = 2_/a 2 + _ between the two eigenvalues. If a 2 + _ > 1 , then buck-

ling instability (i.e. divergence) takes place, arising from the fact that the first eigenvalue



- 23 -

ceasesto bepositive.Else,thesystemalwayshaselasticstability.

6.1.1. Vibration Localization and Geometric Stability

Figure 15 (a) shows the eigenvalue loci, plotted from equation (ga) for both weak cou-

pling (fl = .01) and strong coupling (fl = 0.5). Curve veering is evident in the neighbor-

hood of a = 0 in both cases. The radius of curvature of the curve for weak coupling is

much smaller than that for strong coupling. Thus, the veering is more pronounced for

weak coupling.

In discussing vibration localization, it is important to consider two limiting parameter

cases: a = 0 and/3 = 0. In the first case, when a = 0, an examination of the eigenvector

equation (9b) shows that localization cannot take place, irrespective of the strength of

coupling,/3, provided/3 _: 0. Thus, a perfect, tuned, system does not experience localiza-

tion, since its mode shape elements are all constants, invariant with coupling strength.

For all other values of a, varying degrees of localization occur, depending on how large

a is relative to /3. In the second limit when /3 = 0, perfect localization takes place,

irrespective of the value of mistuning, a, even when a = 0. Thus, a completely decoupled

system always exhibits localization, since there is no mechanism for energy interchange

between the subsystems.

The case when both a = 0 and /3 = 0 simultaneously is a degenerate condition. In the

neighborhood of the degeneracy, we have geometric instability. This means that a very

small change in either a or/3 changes the eigenvectors considerably. Vibration localiza-

tion is an extreme case of this instability, and occurs when /3/a is very close to zero.

Since/3/a = 0 represents a decoupled system, vibration localization is an indication that

the system is close to being decoupled.

By plotting the eigenvector parameters, u] = a-_/a 2 +/32 versus a, and

u 2 = a + _]a 2 +/32 versus a, one also obtains veering in the eigenvector curves, Figure

15 (b). This type of veering may be contrasted with that exhibited by the eigenvalues.

6.1.2. Vibration Localization and Beats

Since the time of Huygens_: in the 17th century, the phenomenon of "beats" has been

C. Huygens, Holorgium Oscillatorium. Paris: 1673. (English Translation by R. J. Blackwell,
Iowa State University Press, 1986).
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known in relation to pendulum clocks. In discussing the relationship between beats and

vibration localization, it is important to consider two limiting cases a = 0 and/3 = 0, in

the coupling of two identical systems P and Q, as before.

In the first case when a = 0, there is a perfectly periodic and complete exchange of

energy between the two systems, irrespective of the value of/3, provided it does not actu-

ally vanish. The only effect of the coupling strength/3 is to regulate the period of beating.

Weak coupling leads to longer periods, while strong coupling leads to shorter periods. A

time domain analysis illustrates the foregoing very well. If we set system P in motion

while leaving Q at rest, then initially all the kinetic energy is in P while Q is stationary.

After a while energy is transferred from P to Q, so that Q has all the kinetic energy while

P is stationary. Then, after another while, the energy is transferred back to P, and so

forth. The rate of energy transfer is governed primarily by the magnitude of coupling,

since there is no mistuning.

In the second limit when/3 = 0, there is no energy exchange whatsoever, irrespective of

the value of a, including a = 0. The complete decoupling, therefore, manifests itself as

perfect localization for all levels of mistuning.

In the neighborhood of degeneracy (i.e. a--/3 = 0 simultaneously), more complicated

beating and varying degrees of localization take place. For instance, a very weak cou-

pling/3 = 0.001 and relatively moderate mistuning a = 0.1, lead to the response curves in

Figure 16. The initial conditions correspond to x0 = 1, Y0 = 0, x0 = 0, and Y0 - 0. Here,

x represents the displacement of subsystem P, while y denotes that of Q. Notice that,

because of the extremely weak coupling, the amplitude of y is almost zero, while that of

x is pretty much close to the initial condition. The beating is not very evident from a short

term trace as in Figure 16 (a). Figures 16 (b) and 16 (c) show long term trends for both

x (t) and y (t) respectively.

As the coupling strength is increased while keeping the mistuning constant at a = 0.1, we

obtain the traces in Figures 17 (a) - (e). Respectively, the coupling strengths are/3 = 0,

0.01, 0.1, 0.9, 1.0. The initial conditions here are the same as in Figures 16, and through

out similar figures in the remainder of this paper. Figure 17 (a),/3 = 0, is the reference

case representing the decoupled system. In Figure 17 (b),/3 = 0.01, the beating frequency

is higher than before, and the amplitudes of both systems are almost equal. Because the
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systemis undampedand is stablein theelastic sense,the long term trend is an infinite

sequenceof energyexchangebetweentheinteractingsubsystemsP and Q. Figure 17 (d),

/3 = 0.9, represents a system that is almost close to buckling. Therefore, rather than beat-

ing, i.e. energy exchange, there is energy modulation, with both subsystems almost out of

phase at every time. The critical value of/3 = 1 in Figure 17 (e) corresponds to the buck-

ling limit. Since the system is elastically unstable at the buckled state, the amplitudes of

both subsystems increase without bound, while undergoing harmonic oscillation in the

process. This kind of motion is not the same as the classical static divergence, and may

be termed dynamic divergence, in contrast to static divergence where no oscillation takes

place, or flutter, which is sometimes known as oscillatory divergence; see the illustra-

tions in Figures 18 (a) - (c).

6.2 Non-Conservative Coupling

The above procedures are now repeated for the system with non-conservative coupling.

The eigenvalues and eigenvectors of the system in canonical form are

Zl = 1--_f-__/32 ; Z2 = 1 + qa'2-/32 . (10a)

Ul = ; U2 = • (lOb)

a-- 0_+

We notice that at a = 1/31, there is eigenvalue degeneracy of the first kind, section

4.3.2. The eigenvectors are also degenerate. There exists a parameter range, -/3<_a<_/3, at

which flutter occurs; its width is 2/3, and is governed solely by the coupling,/3.

Figure 19 (a) shows the eigenvalue loci for both weak and strong non-conservative cou-

pling. For weak coupling, the unstable region is very small, whereas it is large for strong

coupling. In this sense, weak coupling /3= 0 is advantageous while strong coupling

/3 > > 0 leads to a wide range of a where the system flutters. The eigenvector loci are

also shown in Figure 19b. Here, instead of curve veering, we have curve collision.

A time domain solution reveals that the system with purely non conservative coupling

inherently lacks elastic stability, whenever there is no mistuning; therefore, the system

flutters. Mistuning or imperfection is thus a stabilizing factor in these kinds of system.
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But this is conditional stabilization, since the stability offered by mistuning depends also

on the coupling strength, ft. In fact, the ratio of mistuning to coupling strength is a very

important parameter in this regard. For a large ratio of mistuning to coupling strength as

in Figure 20 (a) (a = 0.1,fl = .001), the system behaves as the corresponding system with

non-conservative coupling. As the magnitude of coupling is increased while keeping mis-

tuning fixed at a = 0.1, we get Figures 20 (b) and (c). At Figure 20 (b), fl = 0.01, and

both systems are stable, in the long term. Beating also takes place as energy is passed

back and forth between the two subsystems. But as coupling increases to, for instance

fl = 0.1 as in Figure 20 (c), we have elastic instability. From here on, any further increase

in coupling introduces large amplitudes to both systems. The stability boundary in the

parameter space is at the point where mistuning balances coupling, a = ft.

7. CONCLUSIONS

It is instructive to distinguish between conservative and non conservative coupling in

vibrating systems. This idea is due to Professor Crandall. It is also instructive to pay

attention to degenerate conditions, which are generators of "structural instability". This

other idea is due to Professor Thom. By combining Crandall's classification of conserva-

tive and non conservative coupling from vibration theory with Thom's transversality

theorem from catastrophe theory, certain deductions concerning the elastic stability and

geometric stability of linear vibrating systems have been outlined. The following is a

summary.

(a) Tuned systems with purely non conservative coupling (equation 4b, a = 0) are

always elastically unstable. This is often called "flutter instability". Stabiliza-

tion of such systems is possible if (a) a certain amount of conservative cou-

pling is also present, or (b) a certain amount of mistuning is present, a _ 0.

(b) When mistuning or imperfection is used to stabilize the system with purely

non conservative coupling, the amount of mistuning must be carefully regu-

lated. The flutter boundary is at the parameter value where the ratio of mistun-

ing to coupling equals unity. A system with purely non conservative coupling

and too little a ratio of mistuning to coupling strength, or no mistuning at all,

will flutter.
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(c)The range of parameter values at which the system with non conservative cou-

pling is elastically unstable depends on the magnitude of the coupling strength,

ft. Weak coupling gives a larger range of stability, whereas strong coupling

gives a wider range of instability. In this sense, weak nonconservative cou-

pling is more advantageous than strong coupling.

(d) In the neighborhood of degenerate modes, systems with either purely conser-

vative coupling or purely non conservative coupling both have geometric ins-

tability. This means that the eigenvectors rotate their direction of alignment

much more rapidly here than in any other region of the parameter space.

(e) At the exact moment of eigenvalue degeneracy, i.e. at the bifurcation point,

the eigenvectors of the system with non-conservative coupling are also degen-

erate; whereas in a system with conservative coupling the eigenvectors are

dense in the unit disk, from which one may arbitrarily select any mutually

orthogonal pair of vectors.

(f) Undamped systems with purely conservative coupling cannot flutter. But elas-

tic instability can arise when buckling takes place, leading to "dynamic diver-

gence". This is not the same as "static divergence", or "oscillatory diver-

gence".

Examples of mechanical systems are provided to illustrate the foregoing.
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APPENDIX: The Transversality Theorems

This exposition arose from my interpretation of the following theorems, with the objec-

tive of applying them in linear vibration analysis. Neither in the statement of the

theorems, nor in their proofs, is it required that their application be limited to nonlinear,

gradient dynamic systems as far as I can determine. Theorem 3, for instance, seems

applicable for matrices originating from linear or nonlinear systems, while theorem 4

appears to be valid for all C** functions, whether or not such functions originate from

nonlinear, gradient dynamic systems. Theorem 2 is a generalization of Theorem 1.

Theorem 4 reduces to the Morse Lemma in the case when fis a function of one variable.

The statements here are based on those of Arnol'd [10]. For proofs and other variants of

the theorems, see Abraham and Robin [1], Arnol'd [10], Poston and Stewart [39], or

Thom and Levin [43].

Theorem 1 (The Weak Transversality Theorem)

Let f : B ---) A be a smooth map of a compact manifold to a manifold A contain-

ing a compact submanifold C c A. Then the maps f that are transversal to C form

an everywhere dense subset of the function space of all maps f : B ---) A with the

cr-topology, s < r <__, where s > max (dimB -dimA + C, 0).

Theorem 2 (Thom's Transversality Theorem)

Let C be any regular submanifold of the jet space Jk(B, A ). Then, the set of

maps f : B -+ A whose k-jet extensions are transversal to C is an everywhere

dense intersection of open sets in the space of smooth maps.

Theorem 3 (Corollary to Theorem 1, for matrices)

In the space of smooth families of mappings f: B --_ A of nxn matrices, those fam-

ilies that are transversal to the stratified variety C form an everywhere dense

set. In particular, the values of the parameters corresponding to matrices of rank

r form, in general, a smooth submanifold of the parameter space B of codi-

mension (m-r)(n-r).

Theorem 4 (Corollary to Theorem 2, for smooth functions)

In the space of smooth functions f : B ---)A, those functions whose critical points

are non degenerate form an everywhere dense intersection of open sets.
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Figure 1: Eigenvalues as functions of the system parameter, or.

(a) conservative coupling; (b) non conservative coupling.
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Figure 2: Transversal and non-transversal intersections; (a) the non-transversal intersection at X is unstable,

a small perturbation either leads to CO)two intersection points, or (c) none at all ;

(d) the two intersections are transversal, and (e) are stable under small perturbations.
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(a) (b) (c)

Figure3: Thesymmetricpitchforkbifurcation;(a)degeneratecase;(b),(c)versalfamily.

(a) (b) (c)

Figure 4: Local bifurcation diagrams are linear versions of the globally nonlinear curves of Figure 3.

(a) degenerate case; (b), (c) versal family.



- 35 -

,-<

_o

parameter,

_S

• , parameter, R

flutter range

Figure 5: Eigenvalue Veering. Figure 6: Eigenvalue Collision; a range of parameter

exists, at which flutter takes place.
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Figure 7: Eigenvalues are degenerate at the

bifurcation point; the eigenvectors

are also degenerate.

Figure 8: Eigenvalues are degenerate at the bifurcation

point; the eigenvectors are not degenerate,

but are dense in the unit disk.
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Figure 9: Composition of two one degree of freedom systems.

(a), (b) Eigenvalue varies with parameter;

(c) composite bifurcation diagram (degenerate);

(d) conservative coupling; (curve veering); (e) non-conservative coupling (eigenvalue collision).
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Figure 10: Composition of two one degree of freedom systems. Eigenvalue

(a) varies with parameter in subsystem 1; (b) is invariant in subsystem 2;

(c) composite bifurcation diagram (degenerate);

(d) conservative coupling; (curve veering); (e) non-conservative coupling (eigenvalue collision).
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Figure11:Twopendulawithconservativecoupling,13•
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Figure 12: Interaction between a 2-degree-of-freedom system P and a single degree of freedom system

with conservative coupling; (a) the eigenvalues of system P are invariant with system parameter;

(b) that of system Q increases linearly with system parameter;

(c) composite system's eigenvalue loci.
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Figure 13: Interaction between a multi degree-of-freedom system P and a single degree of freedom systcm Q

with conservative coupling; (a) the eigenvalues of system P vary nonlinearly with system parameter;

(b) that of system Q varies linearly with system parameter;

(c) composite system's eigenvalue loci.
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Figure 14: Engine/propeller interaction leading, first to eigenvalue veering, then to eigenvalue collision.

(a) engine frequency is invariant with parameter (rotation speed);

(b) variation of propeller frequency with rotation speeed;

(c) variation of the coupled system's frequencies with rotation speed.
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Figure 15: Loci showing veering of the (a) eigenvalues, and (b) eigenvectors in the

canonical system with conservative coupling.
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Figure 16: Time domain response of the canonical system with conservative coupling

(a) short term, x and y displacement; (b) long term, x displacement;

(c) long term, y displacement

...... x(t); _ y(t); x (o) = 1, y (o) = O.
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Figure 17: Time domain response of the canonical system with conservative coupling for various

coupling strengths and fixed mistuning.

(a)ct=O.l,13=O; (b)ct=O.l, J3=O.O1; (c) a=O.l, 13=O.1

....... x(t);_ y(t); x(o)= 1,y(o) = O.
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Figure 17 (concluded) : Time domain response of the canonical system with conservative coupling for various

coupling strengths and f'Lxedmistuning.

(d)a= 0.1,_= 0.9; (e)a= 0.1,_= I (bucklinglimiO.
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Figure 18: Different types of elastic instabilities in a mechanical system with 2 d.o.f.

(a) static divergence; Co)dynamic divergence;

(c) oscillatory divergence (flutter).
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Figure 19: Loci showing attraction, and ultimate collision, in the (a) eigenvalues, and (b) eigenvectors

of the canonical system with non-conservative coupling.
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Figure 20: Time domain response of the canonical system with non-conservative coupling for various

coupling strengths and fixed mistuning.

(a)c_=0.1,l_=O.OOl; (b) a=0.1,_=O.Ol; (c) (z=0.I,_=0.I

...... x(t); __ y(t); x (o) = l, y (o ) = O.
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